\(\int \frac {1}{(a+\frac {b}{x})^{3/2} (c+\frac {d}{x})^2} \, dx\) [257]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 224 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\frac {b \left (3 b^2 c^2-2 a b c d+2 a^2 d^2\right )}{a^2 c^2 (b c-a d)^2 \sqrt {a+\frac {b}{x}}}+\frac {d (b c-2 a d)}{a c^2 (b c-a d) \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {d^{5/2} (7 b c-4 a d) \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c^3 (b c-a d)^{5/2}}-\frac {(3 b c+4 a d) \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2} c^3} \]

[Out]

d^(5/2)*(-4*a*d+7*b*c)*arctan(d^(1/2)*(a+b/x)^(1/2)/(-a*d+b*c)^(1/2))/c^3/(-a*d+b*c)^(5/2)-(4*a*d+3*b*c)*arcta
nh((a+b/x)^(1/2)/a^(1/2))/a^(5/2)/c^3+b*(2*a^2*d^2-2*a*b*c*d+3*b^2*c^2)/a^2/c^2/(-a*d+b*c)^2/(a+b/x)^(1/2)+d*(
-2*a*d+b*c)/a/c^2/(-a*d+b*c)/(c+d/x)/(a+b/x)^(1/2)+x/a/c/(c+d/x)/(a+b/x)^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {382, 105, 156, 157, 162, 65, 214, 211} \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right ) (4 a d+3 b c)}{a^{5/2} c^3}+\frac {b \left (2 a^2 d^2-2 a b c d+3 b^2 c^2\right )}{a^2 c^2 \sqrt {a+\frac {b}{x}} (b c-a d)^2}+\frac {d^{5/2} (7 b c-4 a d) \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c^3 (b c-a d)^{5/2}}+\frac {d (b c-2 a d)}{a c^2 \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right ) (b c-a d)}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )} \]

[In]

Int[1/((a + b/x)^(3/2)*(c + d/x)^2),x]

[Out]

(b*(3*b^2*c^2 - 2*a*b*c*d + 2*a^2*d^2))/(a^2*c^2*(b*c - a*d)^2*Sqrt[a + b/x]) + (d*(b*c - 2*a*d))/(a*c^2*(b*c
- a*d)*Sqrt[a + b/x]*(c + d/x)) + x/(a*c*Sqrt[a + b/x]*(c + d/x)) + (d^(5/2)*(7*b*c - 4*a*d)*ArcTan[(Sqrt[d]*S
qrt[a + b/x])/Sqrt[b*c - a*d]])/(c^3*(b*c - a*d)^(5/2)) - ((3*b*c + 4*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[a]])/(a^
(5/2)*c^3)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 105

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] &
& (IntegerQ[n] || IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 157

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[(a + b/x^n)^p*((c +
 d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {1}{x^2 (a+b x)^{3/2} (c+d x)^2} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {\text {Subst}\left (\int \frac {\frac {1}{2} (3 b c+4 a d)+\frac {5 b d x}{2}}{x (a+b x)^{3/2} (c+d x)^2} \, dx,x,\frac {1}{x}\right )}{a c} \\ & = \frac {d (b c-2 a d)}{a c^2 (b c-a d) \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}-\frac {\text {Subst}\left (\int \frac {-\frac {1}{2} (b c-a d) (3 b c+4 a d)-\frac {3}{2} b d (b c-2 a d) x}{x (a+b x)^{3/2} (c+d x)} \, dx,x,\frac {1}{x}\right )}{a c^2 (b c-a d)} \\ & = \frac {b \left (3 b^2 c^2-2 a b c d+2 a^2 d^2\right )}{a^2 c^2 (b c-a d)^2 \sqrt {a+\frac {b}{x}}}+\frac {d (b c-2 a d)}{a c^2 (b c-a d) \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}-\frac {2 \text {Subst}\left (\int \frac {-\frac {1}{4} (b c-a d)^2 (3 b c+4 a d)-\frac {1}{4} b d \left (3 b^2 c^2-2 a b c d+2 a^2 d^2\right ) x}{x \sqrt {a+b x} (c+d x)} \, dx,x,\frac {1}{x}\right )}{a^2 c^2 (b c-a d)^2} \\ & = \frac {b \left (3 b^2 c^2-2 a b c d+2 a^2 d^2\right )}{a^2 c^2 (b c-a d)^2 \sqrt {a+\frac {b}{x}}}+\frac {d (b c-2 a d)}{a c^2 (b c-a d) \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {\left (d^3 (7 b c-4 a d)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x} (c+d x)} \, dx,x,\frac {1}{x}\right )}{2 c^3 (b c-a d)^2}+\frac {(3 b c+4 a d) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{x}\right )}{2 a^2 c^3} \\ & = \frac {b \left (3 b^2 c^2-2 a b c d+2 a^2 d^2\right )}{a^2 c^2 (b c-a d)^2 \sqrt {a+\frac {b}{x}}}+\frac {d (b c-2 a d)}{a c^2 (b c-a d) \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {\left (d^3 (7 b c-4 a d)\right ) \text {Subst}\left (\int \frac {1}{c-\frac {a d}{b}+\frac {d x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{x}}\right )}{b c^3 (b c-a d)^2}+\frac {(3 b c+4 a d) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{x}}\right )}{a^2 b c^3} \\ & = \frac {b \left (3 b^2 c^2-2 a b c d+2 a^2 d^2\right )}{a^2 c^2 (b c-a d)^2 \sqrt {a+\frac {b}{x}}}+\frac {d (b c-2 a d)}{a c^2 (b c-a d) \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {x}{a c \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}+\frac {d^{5/2} (7 b c-4 a d) \tan ^{-1}\left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c^3 (b c-a d)^{5/2}}-\frac {(3 b c+4 a d) \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2} c^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.16 (sec) , antiderivative size = 215, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\frac {\frac {c \sqrt {a+\frac {b}{x}} x \left (3 b^3 c^2 (d+c x)+a^3 d^2 x (2 d+c x)+a^2 b d \left (2 d^2-c d x-2 c^2 x^2\right )+a b^2 c \left (-2 d^2-c d x+c^2 x^2\right )\right )}{a^2 (b c-a d)^2 (b+a x) (d+c x)}+\frac {d^{5/2} (7 b c-4 a d) \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}}-\frac {(3 b c+4 a d) \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2}}}{c^3} \]

[In]

Integrate[1/((a + b/x)^(3/2)*(c + d/x)^2),x]

[Out]

((c*Sqrt[a + b/x]*x*(3*b^3*c^2*(d + c*x) + a^3*d^2*x*(2*d + c*x) + a^2*b*d*(2*d^2 - c*d*x - 2*c^2*x^2) + a*b^2
*c*(-2*d^2 - c*d*x + c^2*x^2)))/(a^2*(b*c - a*d)^2*(b + a*x)*(d + c*x)) + (d^(5/2)*(7*b*c - 4*a*d)*ArcTan[(Sqr
t[d]*Sqrt[a + b/x])/Sqrt[b*c - a*d]])/(b*c - a*d)^(5/2) - ((3*b*c + 4*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[a]])/a^(
5/2))/c^3

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(532\) vs. \(2(202)=404\).

Time = 0.38 (sec) , antiderivative size = 533, normalized size of antiderivative = 2.38

method result size
risch \(\frac {a x +b}{a^{2} c^{2} \sqrt {\frac {a x +b}{x}}}+\frac {\left (-\frac {2 \ln \left (\frac {\frac {b}{2}+a x}{\sqrt {a}}+\sqrt {a \,x^{2}+b x}\right ) d}{a^{\frac {3}{2}} c^{3}}-\frac {3 \ln \left (\frac {\frac {b}{2}+a x}{\sqrt {a}}+\sqrt {a \,x^{2}+b x}\right ) b}{2 a^{\frac {5}{2}} c^{2}}+\frac {2 b^{3} \sqrt {a \left (x +\frac {b}{a}\right )^{2}-b \left (x +\frac {b}{a}\right )}}{a^{3} \left (a d -b c \right )^{2} \left (x +\frac {b}{a}\right )}+\frac {d^{3} \sqrt {a \left (x +\frac {d}{c}\right )^{2}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+\frac {\left (a d -b c \right ) d}{c^{2}}}}{c^{3} \left (a d -b c \right )^{2} \left (x +\frac {d}{c}\right )}-\frac {2 a \,d^{4} \ln \left (\frac {\frac {2 \left (a d -b c \right ) d}{c^{2}}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {a \left (x +\frac {d}{c}\right )^{2}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+\frac {\left (a d -b c \right ) d}{c^{2}}}}{x +\frac {d}{c}}\right )}{c^{4} \left (a d -b c \right )^{2} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}}+\frac {7 d^{3} \ln \left (\frac {\frac {2 \left (a d -b c \right ) d}{c^{2}}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {a \left (x +\frac {d}{c}\right )^{2}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+\frac {\left (a d -b c \right ) d}{c^{2}}}}{x +\frac {d}{c}}\right ) b}{2 c^{3} \left (a d -b c \right )^{2} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}}\right ) \sqrt {x \left (a x +b \right )}}{x \sqrt {\frac {a x +b}{x}}}\) \(533\)
default \(\text {Expression too large to display}\) \(3119\)

[In]

int(1/(a+b/x)^(3/2)/(c+d/x)^2,x,method=_RETURNVERBOSE)

[Out]

1/a^2/c^2*(a*x+b)/((a*x+b)/x)^(1/2)+(-2/a^(3/2)/c^3*ln((1/2*b+a*x)/a^(1/2)+(a*x^2+b*x)^(1/2))*d-3/2/a^(5/2)/c^
2*ln((1/2*b+a*x)/a^(1/2)+(a*x^2+b*x)^(1/2))*b+2/a^3*b^3/(a*d-b*c)^2/(x+b/a)*(a*(x+b/a)^2-b*(x+b/a))^(1/2)+1/c^
3*d^3/(a*d-b*c)^2/(x+d/c)*(a*(x+d/c)^2-(2*a*d-b*c)/c*(x+d/c)+(a*d-b*c)*d/c^2)^(1/2)-2*a/c^4*d^4/(a*d-b*c)^2/((
a*d-b*c)*d/c^2)^(1/2)*ln((2*(a*d-b*c)*d/c^2-(2*a*d-b*c)/c*(x+d/c)+2*((a*d-b*c)*d/c^2)^(1/2)*(a*(x+d/c)^2-(2*a*
d-b*c)/c*(x+d/c)+(a*d-b*c)*d/c^2)^(1/2))/(x+d/c))+7/2/c^3*d^3/(a*d-b*c)^2/((a*d-b*c)*d/c^2)^(1/2)*ln((2*(a*d-b
*c)*d/c^2-(2*a*d-b*c)/c*(x+d/c)+2*((a*d-b*c)*d/c^2)^(1/2)*(a*(x+d/c)^2-(2*a*d-b*c)/c*(x+d/c)+(a*d-b*c)*d/c^2)^
(1/2))/(x+d/c))*b)/x/((a*x+b)/x)^(1/2)*(x*(a*x+b))^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 569 vs. \(2 (202) = 404\).

Time = 0.62 (sec) , antiderivative size = 2321, normalized size of antiderivative = 10.36 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a+b/x)^(3/2)/(c+d/x)^2,x, algorithm="fricas")

[Out]

[1/2*((3*b^4*c^3*d - 2*a*b^3*c^2*d^2 - 5*a^2*b^2*c*d^3 + 4*a^3*b*d^4 + (3*a*b^3*c^4 - 2*a^2*b^2*c^3*d - 5*a^3*
b*c^2*d^2 + 4*a^4*c*d^3)*x^2 + (3*b^4*c^4 + a*b^3*c^3*d - 7*a^2*b^2*c^2*d^2 - a^3*b*c*d^3 + 4*a^4*d^4)*x)*sqrt
(a)*log(2*a*x - 2*sqrt(a)*x*sqrt((a*x + b)/x) + b) - (7*a^3*b^2*c*d^3 - 4*a^4*b*d^4 + (7*a^4*b*c^2*d^2 - 4*a^5
*c*d^3)*x^2 + (7*a^3*b^2*c^2*d^2 + 3*a^4*b*c*d^3 - 4*a^5*d^4)*x)*sqrt(-d/(b*c - a*d))*log(-(2*(b*c - a*d)*x*sq
rt(-d/(b*c - a*d))*sqrt((a*x + b)/x) - b*d + (b*c - 2*a*d)*x)/(c*x + d)) + 2*((a^2*b^2*c^4 - 2*a^3*b*c^3*d + a
^4*c^2*d^2)*x^3 + (3*a*b^3*c^4 - a^2*b^2*c^3*d - a^3*b*c^2*d^2 + 2*a^4*c*d^3)*x^2 + (3*a*b^3*c^3*d - 2*a^2*b^2
*c^2*d^2 + 2*a^3*b*c*d^3)*x)*sqrt((a*x + b)/x))/(a^3*b^3*c^5*d - 2*a^4*b^2*c^4*d^2 + a^5*b*c^3*d^3 + (a^4*b^2*
c^6 - 2*a^5*b*c^5*d + a^6*c^4*d^2)*x^2 + (a^3*b^3*c^6 - a^4*b^2*c^5*d - a^5*b*c^4*d^2 + a^6*c^3*d^3)*x), 1/2*(
2*(7*a^3*b^2*c*d^3 - 4*a^4*b*d^4 + (7*a^4*b*c^2*d^2 - 4*a^5*c*d^3)*x^2 + (7*a^3*b^2*c^2*d^2 + 3*a^4*b*c*d^3 -
4*a^5*d^4)*x)*sqrt(d/(b*c - a*d))*arctan(-(b*c - a*d)*x*sqrt(d/(b*c - a*d))*sqrt((a*x + b)/x)/(a*d*x + b*d)) +
 (3*b^4*c^3*d - 2*a*b^3*c^2*d^2 - 5*a^2*b^2*c*d^3 + 4*a^3*b*d^4 + (3*a*b^3*c^4 - 2*a^2*b^2*c^3*d - 5*a^3*b*c^2
*d^2 + 4*a^4*c*d^3)*x^2 + (3*b^4*c^4 + a*b^3*c^3*d - 7*a^2*b^2*c^2*d^2 - a^3*b*c*d^3 + 4*a^4*d^4)*x)*sqrt(a)*l
og(2*a*x - 2*sqrt(a)*x*sqrt((a*x + b)/x) + b) + 2*((a^2*b^2*c^4 - 2*a^3*b*c^3*d + a^4*c^2*d^2)*x^3 + (3*a*b^3*
c^4 - a^2*b^2*c^3*d - a^3*b*c^2*d^2 + 2*a^4*c*d^3)*x^2 + (3*a*b^3*c^3*d - 2*a^2*b^2*c^2*d^2 + 2*a^3*b*c*d^3)*x
)*sqrt((a*x + b)/x))/(a^3*b^3*c^5*d - 2*a^4*b^2*c^4*d^2 + a^5*b*c^3*d^3 + (a^4*b^2*c^6 - 2*a^5*b*c^5*d + a^6*c
^4*d^2)*x^2 + (a^3*b^3*c^6 - a^4*b^2*c^5*d - a^5*b*c^4*d^2 + a^6*c^3*d^3)*x), 1/2*(2*(3*b^4*c^3*d - 2*a*b^3*c^
2*d^2 - 5*a^2*b^2*c*d^3 + 4*a^3*b*d^4 + (3*a*b^3*c^4 - 2*a^2*b^2*c^3*d - 5*a^3*b*c^2*d^2 + 4*a^4*c*d^3)*x^2 +
(3*b^4*c^4 + a*b^3*c^3*d - 7*a^2*b^2*c^2*d^2 - a^3*b*c*d^3 + 4*a^4*d^4)*x)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*x
+ b)/x)/a) - (7*a^3*b^2*c*d^3 - 4*a^4*b*d^4 + (7*a^4*b*c^2*d^2 - 4*a^5*c*d^3)*x^2 + (7*a^3*b^2*c^2*d^2 + 3*a^4
*b*c*d^3 - 4*a^5*d^4)*x)*sqrt(-d/(b*c - a*d))*log(-(2*(b*c - a*d)*x*sqrt(-d/(b*c - a*d))*sqrt((a*x + b)/x) - b
*d + (b*c - 2*a*d)*x)/(c*x + d)) + 2*((a^2*b^2*c^4 - 2*a^3*b*c^3*d + a^4*c^2*d^2)*x^3 + (3*a*b^3*c^4 - a^2*b^2
*c^3*d - a^3*b*c^2*d^2 + 2*a^4*c*d^3)*x^2 + (3*a*b^3*c^3*d - 2*a^2*b^2*c^2*d^2 + 2*a^3*b*c*d^3)*x)*sqrt((a*x +
 b)/x))/(a^3*b^3*c^5*d - 2*a^4*b^2*c^4*d^2 + a^5*b*c^3*d^3 + (a^4*b^2*c^6 - 2*a^5*b*c^5*d + a^6*c^4*d^2)*x^2 +
 (a^3*b^3*c^6 - a^4*b^2*c^5*d - a^5*b*c^4*d^2 + a^6*c^3*d^3)*x), ((7*a^3*b^2*c*d^3 - 4*a^4*b*d^4 + (7*a^4*b*c^
2*d^2 - 4*a^5*c*d^3)*x^2 + (7*a^3*b^2*c^2*d^2 + 3*a^4*b*c*d^3 - 4*a^5*d^4)*x)*sqrt(d/(b*c - a*d))*arctan(-(b*c
 - a*d)*x*sqrt(d/(b*c - a*d))*sqrt((a*x + b)/x)/(a*d*x + b*d)) + (3*b^4*c^3*d - 2*a*b^3*c^2*d^2 - 5*a^2*b^2*c*
d^3 + 4*a^3*b*d^4 + (3*a*b^3*c^4 - 2*a^2*b^2*c^3*d - 5*a^3*b*c^2*d^2 + 4*a^4*c*d^3)*x^2 + (3*b^4*c^4 + a*b^3*c
^3*d - 7*a^2*b^2*c^2*d^2 - a^3*b*c*d^3 + 4*a^4*d^4)*x)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*x + b)/x)/a) + ((a^2*b
^2*c^4 - 2*a^3*b*c^3*d + a^4*c^2*d^2)*x^3 + (3*a*b^3*c^4 - a^2*b^2*c^3*d - a^3*b*c^2*d^2 + 2*a^4*c*d^3)*x^2 +
(3*a*b^3*c^3*d - 2*a^2*b^2*c^2*d^2 + 2*a^3*b*c*d^3)*x)*sqrt((a*x + b)/x))/(a^3*b^3*c^5*d - 2*a^4*b^2*c^4*d^2 +
 a^5*b*c^3*d^3 + (a^4*b^2*c^6 - 2*a^5*b*c^5*d + a^6*c^4*d^2)*x^2 + (a^3*b^3*c^6 - a^4*b^2*c^5*d - a^5*b*c^4*d^
2 + a^6*c^3*d^3)*x)]

Sympy [F]

\[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\int \frac {x^{2}}{\left (a + \frac {b}{x}\right )^{\frac {3}{2}} \left (c x + d\right )^{2}}\, dx \]

[In]

integrate(1/(a+b/x)**(3/2)/(c+d/x)**2,x)

[Out]

Integral(x**2/((a + b/x)**(3/2)*(c*x + d)**2), x)

Maxima [F]

\[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x}\right )}^{\frac {3}{2}} {\left (c + \frac {d}{x}\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b/x)^(3/2)/(c+d/x)^2,x, algorithm="maxima")

[Out]

integrate(1/((a + b/x)^(3/2)*(c + d/x)^2), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(a+b/x)^(3/2)/(c+d/x)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [B] (verification not implemented)

Time = 9.87 (sec) , antiderivative size = 4274, normalized size of antiderivative = 19.08 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )^2} \, dx=\text {Too large to display} \]

[In]

int(1/((a + b/x)^(3/2)*(c + d/x)^2),x)

[Out]

((2*b^3)/(a^2*d - a*b*c) + (b*(a + b/x)^2*(2*a^2*d^3 + 3*b^2*c^2*d - 2*a*b*c*d^2))/(c^2*(a^2*d - a*b*c)^2) - (
b*(a + b/x)*(2*a*d - b*c)*(a^2*d^2 + 3*b^2*c^2 - a*b*c*d))/(c^2*(a^2*d - a*b*c)^2))/(d*(a + b/x)^(5/2) + (a +
b/x)^(1/2)*(a^2*d - a*b*c) - (a + b/x)^(3/2)*(2*a*d - b*c)) + (atan((a^13*b^11*c^11*d^3*(a + b/x)^(1/2)*35i -
a^12*b^12*c^12*d^2*(a + b/x)^(1/2)*441i - a^10*b^14*c^14*(a + b/x)^(1/2)*27i + a^14*b^10*c^10*d^4*(a + b/x)^(1
/2)*1694i - a^15*b^9*c^9*d^5*(a + b/x)^(1/2)*3073i + a^16*b^8*c^8*d^6*(a + b/x)^(1/2)*1316i + a^17*b^7*c^7*d^7
*(a + b/x)^(1/2)*2561i - a^18*b^6*c^6*d^8*(a + b/x)^(1/2)*4375i + a^19*b^5*c^5*d^9*(a + b/x)^(1/2)*2996i - a^2
0*b^4*c^4*d^10*(a + b/x)^(1/2)*1015i + a^21*b^3*c^3*d^11*(a + b/x)^(1/2)*140i + a^11*b^13*c^13*d*(a + b/x)^(1/
2)*189i)/(a^5*(a^5)^(1/2)*(a^5*(a^5*(2561*b^7*c^7*d^7 - 4375*a*b^6*c^6*d^8 + 2996*a^2*b^5*c^5*d^9 - 1015*a^3*b
^4*c^4*d^10 + 140*a^4*b^3*c^3*d^11) - 441*b^12*c^12*d^2 + 35*a*b^11*c^11*d^3 + 1694*a^2*b^10*c^10*d^4 - 3073*a
^3*b^9*c^9*d^5 + 1316*a^4*b^8*c^8*d^6) - 27*a^3*b^14*c^14 + 189*a^4*b^13*c^13*d)))*(4*a*d + 3*b*c)*1i)/(c^3*(a
^5)^(1/2)) - (atan((((d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*c)*((a + b/x)^(1/2)*(18*a^6*b^14*c^18*d^3 - 132*a^
7*b^13*c^17*d^4 + 362*a^8*b^12*c^16*d^5 - 320*a^9*b^11*c^15*d^6 - 442*a^10*b^10*c^14*d^7 + 1004*a^11*b^9*c^13*
d^8 + 578*a^12*b^8*c^12*d^9 - 3976*a^13*b^7*c^11*d^10 + 5960*a^14*b^6*c^10*d^11 - 4768*a^15*b^5*c^9*d^12 + 222
8*a^16*b^4*c^8*d^13 - 576*a^17*b^3*c^7*d^14 + 64*a^18*b^2*c^6*d^15) - ((d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*
c)*(12*a^8*b^14*c^21*d^2 - 116*a^9*b^13*c^20*d^3 + 484*a^10*b^12*c^19*d^4 - 1128*a^11*b^11*c^18*d^5 + 1560*a^1
2*b^10*c^17*d^6 - 1176*a^13*b^9*c^16*d^7 + 168*a^14*b^8*c^15*d^8 + 576*a^15*b^7*c^14*d^9 - 612*a^16*b^6*c^13*d
^10 + 300*a^17*b^5*c^12*d^11 - 76*a^18*b^4*c^11*d^12 + 8*a^19*b^3*c^10*d^13 - ((d^5*(a*d - b*c)^5)^(1/2)*(a +
b/x)^(1/2)*(4*a*d - 7*b*c)*(8*a^10*b^13*c^23*d^2 - 96*a^11*b^12*c^22*d^3 + 520*a^12*b^11*c^21*d^4 - 1680*a^13*
b^10*c^20*d^5 + 3600*a^14*b^9*c^19*d^6 - 5376*a^15*b^8*c^18*d^7 + 5712*a^16*b^7*c^17*d^8 - 4320*a^17*b^6*c^16*
d^9 + 2280*a^18*b^5*c^15*d^10 - 800*a^19*b^4*c^14*d^11 + 168*a^20*b^3*c^13*d^12 - 16*a^21*b^2*c^12*d^13))/(2*(
b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d))))/(2*(b^5*
c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d)))*1i)/(2*(b^5*c
^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d)) + ((d^5*(a*d -
b*c)^5)^(1/2)*(4*a*d - 7*b*c)*((a + b/x)^(1/2)*(18*a^6*b^14*c^18*d^3 - 132*a^7*b^13*c^17*d^4 + 362*a^8*b^12*c^
16*d^5 - 320*a^9*b^11*c^15*d^6 - 442*a^10*b^10*c^14*d^7 + 1004*a^11*b^9*c^13*d^8 + 578*a^12*b^8*c^12*d^9 - 397
6*a^13*b^7*c^11*d^10 + 5960*a^14*b^6*c^10*d^11 - 4768*a^15*b^5*c^9*d^12 + 2228*a^16*b^4*c^8*d^13 - 576*a^17*b^
3*c^7*d^14 + 64*a^18*b^2*c^6*d^15) + ((d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*c)*(12*a^8*b^14*c^21*d^2 - 116*a^
9*b^13*c^20*d^3 + 484*a^10*b^12*c^19*d^4 - 1128*a^11*b^11*c^18*d^5 + 1560*a^12*b^10*c^17*d^6 - 1176*a^13*b^9*c
^16*d^7 + 168*a^14*b^8*c^15*d^8 + 576*a^15*b^7*c^14*d^9 - 612*a^16*b^6*c^13*d^10 + 300*a^17*b^5*c^12*d^11 - 76
*a^18*b^4*c^11*d^12 + 8*a^19*b^3*c^10*d^13 + ((d^5*(a*d - b*c)^5)^(1/2)*(a + b/x)^(1/2)*(4*a*d - 7*b*c)*(8*a^1
0*b^13*c^23*d^2 - 96*a^11*b^12*c^22*d^3 + 520*a^12*b^11*c^21*d^4 - 1680*a^13*b^10*c^20*d^5 + 3600*a^14*b^9*c^1
9*d^6 - 5376*a^15*b^8*c^18*d^7 + 5712*a^16*b^7*c^17*d^8 - 4320*a^17*b^6*c^16*d^9 + 2280*a^18*b^5*c^15*d^10 - 8
00*a^19*b^4*c^14*d^11 + 168*a^20*b^3*c^13*d^12 - 16*a^21*b^2*c^12*d^13))/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c
^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d))))/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d
^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d)))*1i)/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^
4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d)))/(((d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*c)*((a
 + b/x)^(1/2)*(18*a^6*b^14*c^18*d^3 - 132*a^7*b^13*c^17*d^4 + 362*a^8*b^12*c^16*d^5 - 320*a^9*b^11*c^15*d^6 -
442*a^10*b^10*c^14*d^7 + 1004*a^11*b^9*c^13*d^8 + 578*a^12*b^8*c^12*d^9 - 3976*a^13*b^7*c^11*d^10 + 5960*a^14*
b^6*c^10*d^11 - 4768*a^15*b^5*c^9*d^12 + 2228*a^16*b^4*c^8*d^13 - 576*a^17*b^3*c^7*d^14 + 64*a^18*b^2*c^6*d^15
) - ((d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*c)*(12*a^8*b^14*c^21*d^2 - 116*a^9*b^13*c^20*d^3 + 484*a^10*b^12*c
^19*d^4 - 1128*a^11*b^11*c^18*d^5 + 1560*a^12*b^10*c^17*d^6 - 1176*a^13*b^9*c^16*d^7 + 168*a^14*b^8*c^15*d^8 +
 576*a^15*b^7*c^14*d^9 - 612*a^16*b^6*c^13*d^10 + 300*a^17*b^5*c^12*d^11 - 76*a^18*b^4*c^11*d^12 + 8*a^19*b^3*
c^10*d^13 - ((d^5*(a*d - b*c)^5)^(1/2)*(a + b/x)^(1/2)*(4*a*d - 7*b*c)*(8*a^10*b^13*c^23*d^2 - 96*a^11*b^12*c^
22*d^3 + 520*a^12*b^11*c^21*d^4 - 1680*a^13*b^10*c^20*d^5 + 3600*a^14*b^9*c^19*d^6 - 5376*a^15*b^8*c^18*d^7 +
5712*a^16*b^7*c^17*d^8 - 4320*a^17*b^6*c^16*d^9 + 2280*a^18*b^5*c^15*d^10 - 800*a^19*b^4*c^14*d^11 + 168*a^20*
b^3*c^13*d^12 - 16*a^21*b^2*c^12*d^13))/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*
a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d))))/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*
b^2*c^5*d^3 - 5*a*b^4*c^7*d))))/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*
c^5*d^3 - 5*a*b^4*c^7*d)) - ((d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*c)*((a + b/x)^(1/2)*(18*a^6*b^14*c^18*d^3
- 132*a^7*b^13*c^17*d^4 + 362*a^8*b^12*c^16*d^5 - 320*a^9*b^11*c^15*d^6 - 442*a^10*b^10*c^14*d^7 + 1004*a^11*b
^9*c^13*d^8 + 578*a^12*b^8*c^12*d^9 - 3976*a^13*b^7*c^11*d^10 + 5960*a^14*b^6*c^10*d^11 - 4768*a^15*b^5*c^9*d^
12 + 2228*a^16*b^4*c^8*d^13 - 576*a^17*b^3*c^7*d^14 + 64*a^18*b^2*c^6*d^15) + ((d^5*(a*d - b*c)^5)^(1/2)*(4*a*
d - 7*b*c)*(12*a^8*b^14*c^21*d^2 - 116*a^9*b^13*c^20*d^3 + 484*a^10*b^12*c^19*d^4 - 1128*a^11*b^11*c^18*d^5 +
1560*a^12*b^10*c^17*d^6 - 1176*a^13*b^9*c^16*d^7 + 168*a^14*b^8*c^15*d^8 + 576*a^15*b^7*c^14*d^9 - 612*a^16*b^
6*c^13*d^10 + 300*a^17*b^5*c^12*d^11 - 76*a^18*b^4*c^11*d^12 + 8*a^19*b^3*c^10*d^13 + ((d^5*(a*d - b*c)^5)^(1/
2)*(a + b/x)^(1/2)*(4*a*d - 7*b*c)*(8*a^10*b^13*c^23*d^2 - 96*a^11*b^12*c^22*d^3 + 520*a^12*b^11*c^21*d^4 - 16
80*a^13*b^10*c^20*d^5 + 3600*a^14*b^9*c^19*d^6 - 5376*a^15*b^8*c^18*d^7 + 5712*a^16*b^7*c^17*d^8 - 4320*a^17*b
^6*c^16*d^9 + 2280*a^18*b^5*c^15*d^10 - 800*a^19*b^4*c^14*d^11 + 168*a^20*b^3*c^13*d^12 - 16*a^21*b^2*c^12*d^1
3))/(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d))))/
(2*(b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d))))/(2*(
b^5*c^8 - a^5*c^3*d^5 + 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d)) - 126*a^6*
b^13*c^14*d^5 + 744*a^7*b^12*c^13*d^6 - 1742*a^8*b^11*c^12*d^7 + 1756*a^9*b^10*c^11*d^8 + 322*a^10*b^9*c^10*d^
9 - 3248*a^11*b^8*c^9*d^10 + 4606*a^12*b^7*c^8*d^11 - 3668*a^13*b^6*c^7*d^12 + 1804*a^14*b^5*c^6*d^13 - 512*a^
15*b^4*c^5*d^14 + 64*a^16*b^3*c^4*d^15))*(d^5*(a*d - b*c)^5)^(1/2)*(4*a*d - 7*b*c)*1i)/(b^5*c^8 - a^5*c^3*d^5
+ 5*a^4*b*c^4*d^4 + 10*a^2*b^3*c^6*d^2 - 10*a^3*b^2*c^5*d^3 - 5*a*b^4*c^7*d)